
Best practices for ingestion partners
using Unity Catalog volumes

Context
The goal of this doc is to outline how Databricks ingestion partners can bring data into Databricks
using Unity Catalog volumes as staging locations for data.

Glossary
● ISV

○ Independent Software Vendors (aka ISVs or technology partners) are software
companies who have business and technical relationships with Databricks.

● Partner Connect
○ Partner Connect lets you create accounts with select Databricks technology

partners and connect your Databricks workspace to partner solutions from the
Databricks UI.

● User
○ Part of the Databricks identity management model. User identities recognized by

Databricks and represented by email addresses.
● Service principal

○ Part of the Databricks identity management model. Identities for use with jobs,
automated tools, and systems such as scripts, apps, and CI/CD platforms.

● Unity Catalog
○ Unity Catalog provides centralized access control, auditing, lineage, and data

discovery capabilities across Databricks workspaces.
● Unity Catalog object model

○ The hierarchy of primary data objects in Unity Catalog. See graph below:

● Catalog
○ Part of the Unity Catalog object model. The first layer of the object hierarchy, used

to organize your data assets (for example schemas, tables, and volumes)
● Schema

○ Part of the Unity Catalog object model. Also known as databases, schemas are the
second layer of the object hierarchy and contain tables and views.

● Table
○ Part of the Unity Catalog object model. A table resides in the third layer of Unity

Catalog’s three-level namespace. It contains rows of data.

What are Volumes
Volumes are Unity Catalog objects representing a logical volume of storage in a cloud object
storage location, with governance based on unity catalog.

Volumes provide capabilities for accessing, storing, governing, and organizing files. While tables
provide governance over tabular datasets, volumes add governance over non-tabular datasets. You
can use volumes to store and access files in any format, including structured, semi-structured, and
unstructured data.

From an administrative perspective volumes are similar to tables: they both live in schemas inside
a catalog.

For more information, please refer to volume public documentation.

High level steps
For Independent Software Vendors (ISVs) building a partner integration, below are the
recommended high-level steps to use volumes to build an integration with Databricks to support
ingest/transform use cases.

1. Partners to document for their customers using ISV integration: permissions required to
create volumes. Refer to the section on prerequisites in “How to create Volumes”.

2. Partners’ customers create a new catalog and grant permission to Partners.
3. Partners use APIs (SQL) to create a schema in the provided catalog.
4. Partners use APIs (SQL) to create a volume.

a. Databricks recommends creating one volume per destination schema.
5. Partnerswrite files to the volume using APIs (SQL).

a. For recommended file size, see “File sizing best practices”.
b. For file format, Databricks recommends that partners use Parquet files when

uploading to volumes.
c. For directories inside the volume, Databricks recommends that partners use table

specific prefixes to separate out the workflows between different tables.
6. Partners use COPY INTO to load data into Delta Lake.

a. If there are transient errors (e.g., network failures), you can re-run COPY INTO. COPY
INTO is a retriable and idempotent operation—files in the volume that have already
been loaded are skipped.

7. Partners delete files in the volumes once the COPY INTO command finishes successfully.

See the following sections of this doc to learn more about the details of each step.

How to create Volumes

On a high level, the volume creation process requires following steps:
1. Partners’ customers follow the “Prerequisite” section below and provide the following 3

items to the partners.
a. Personal access token (PAT)
b. Catalog
c. Compute resource

2. Partners follow the “Create Schemas via SQL” section to create a schema.
3. Partners follow the “Different approaches to create Volumes” section to create a volume.

Prerequisites

Partner’s customer should collect the following information and send it to the partner in a secure
manner (e.g., Partner can provide an App where data transferred from customer is encrypted).

Prerequisite 1: Personal Access Token (PAT)
The steps described in this section are expected to be completed by partners’ customers.
Alternatively, if partners integrate with Partner Connect, Partner Connect will automate the
steps in this section.

Create a Personal Access Token (PAT) for a service principal.
- To provision a Databricks service principal, Databricks recommends that you create a

Databricks service principal in your Databricks account. Then you add that Databricks
service principal to your target Databricks workspace and give the Databricks service
principal workspace permissions. Finally, you generate a Databricks personal access token,
which you can use to represent the Databricks service principal programmatically in calls
from tools, scripts, and SDKs. Follow this quickstart to complete these steps.

Prerequisite 2: Create a Catalog
The steps described in this section are expected to be completed by partners’ customers.
Alternatively, if partners integrate with Partner Connect, Partner Connect will automate the
steps in this section.

Create a catalog to organize your data assets (for example schemas, tables, and volumes).

It is NOT expected that partners will create the catalog when building the integration. Partners
should either:

● Ask customers to create the destination catalog, or
● Use Partner Connect which will set up the catalog.

This section is added so that partners can show customers how to create a destination catalog.

Requirements

● Youmust be a Databricks metastore admin or have been granted the CREATE CATALOG
privilege on themetastore

● Your Databricks account must be on the Premium plan or above.
● Youmust have a Unity Catalog metastore linked to the workspace where you perform the

catalog creation.
● The compute resource that you use to run the notebook or Databricks SQL to create the

catalog must be using a Unity Catalog compliant access mode. Right now the supported
modes are “Assigned” or “Shared”. More details can be found at: What is cluster access
mode?

Create a catalog using the Databricks UI

1. Log in to a workspace that is linked to themetastore.

2. Click Data.
3. Click the Create Catalog button.

4. (Optional) Specify the location where data for managed tables in the catalog will be stored.

Specify a location here only if you do not want managed tables in this catalog to be stored in

the default root storage location that was configured for the metastore. See Create a Unity

Catalog metastore.

The path that you specify must be defined in an external location configuration, and you

must have the CREATE MANAGED STORAGE privilege on that external location. You can also

use a subpath of that path. See Manage external locations and storage credentials.

5. Click Create.
6. (Optional) Specify the workspace that the catalog is bound to.

By default, the catalog is shared with all workspaces attached to the current metastore. If

the catalog contains data that should be restricted to specific workspaces, go to the

Workspaces tab and add those workspaces.

For more information, see (Optional) Assign a catalog to specific workspaces.

7. Grant USE CATALOG and CREATE SCHEMA permission to partner’s service principal. See

Unity Catalog privileges and securable objects for more information.

○ To assign the permissions in SQL, you can run:
■ GRANT USE CATALOG ON CATALOG test_catalog TO

partner_service_principal;

● E.g, GRANT USE CATALOG ON CATALOG test_catalog TO

`partner_job_bot`;

■ GRANT CREATE SCHEMA ON CATALOG test_catalog TO

partner_service_principal;

● E.g, GRANT CREATE SCHEMA ON CATALOG test_catalog TO

`partner_job_bot`;

For more information on how to create catalog (e.g., requirements, using programming languages

such as SQL/Python/R/Scala), see create catalogs.

Prerequisite 3: Compute Resource
The steps described in this section are expected to be completed by partners’ customers.
Alternatively, if partners integrate with Partner Connect, Partner Connect will automate the
steps in this section.

Choose the SQL warehouse (recommended) or cluster that you want to use.

[Recommended] For SQL warehouse:
● The server hostname of the SQL warehouse. You can get this from the Server Hostname

value in the Connection Details tab for your SQL warehouse.
● The HTTP path of the SQL warehouse. You can get this from the HTTP Path value in the

Connection Details tab for your SQL warehouse.

For Cluster:
● The server hostname of the cluster. You can get this from the Server Hostname value in the

Advanced Options > JDBC/ODBC tab for your cluster.
● The HTTP path of the cluster. You can get this from the HTTP Path value in the Advanced

Options > JDBC/ODBC tab for your cluster.

Create Schemas via SQL
The steps described in this section are expected to be completed by partners.

A schema (also known as databases) resides in a catalog. You need a schema to organize tables and
volumes.

Requirements
● Youmust have the USE CATALOG and CREATE SCHEMA data permissions on the schema’s

parent catalog. Either a metastore admin or the owner of the catalog can grant you these
privileges. If you are a metastore admin, you can grant these privileges to yourself.
All users have the USE CATALOG permission on themain catalog by default.

● Your Databricks account must be on the Premium plan or above.
● Youmust have a Unity Catalog metastore linked to the workspace where you perform the

schema creation.
● The compute resource that you use to run the notebook or Databricks SQL to create the

catalog must be using a Unity Catalog compliant access mode. Right now the supported
modes are “Assigned” or “Shared”. More details can be found at: What is cluster access
mode?

Steps

1. Use one of the following approaches to configure the SQL connection:
- Configure the Databricks SQL Connector for Python.
- Configure the Databricks JDBC driver.
- Configure the Databricks ODBC driver.

2. Run the following SQL commands. Items in brackets are optional. Replace the placeholder
values:

a. <catalog-name>: The name of the parent catalog for the schema.
b. <schema-name>: A name for the schema.
c. <comment>: Optional description or other comment.
d. <property-key> = <property-value> [, ...]: Optional. Spark SQL properties and

values to set for the schema.
For parameter descriptions, see CREATE SCHEMA.

USE CATALOG <catalog>;
CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] <schema-name>

[COMMENT <comment>]
[WITH DBPROPERTIES (<property-key = property_value [, ...]>)];

Example:
USE CATALOG test_catalog;
CREATE SCHEMA IF NOT EXISTS test_schema

You can optionally omit the USE CATALOG statement and replace <schema-name> with
<catalog-name>.<schema-name>.

Example:
CREATE SCHEMA IF NOT EXISTS test_catalog.test_schema

Create volumes via SQL
The steps described in this section are expected to be carried out by partners.

It is recommended that partners use one volume per schema.

Steps

1. Use one of the following approaches to configure the SQL connection:
- Configure the Databricks SQL Connector for Python.
- Configure the Databricks JDBC driver.
- Configure the Databricks ODBC driver.

2. Use one of the approaches listed above, run the following command to create the volume.

- CREATE VOLUME <catalog_name>.<schema_name>.<volume_name>;

- Example: CREATE VOLUME test_catalog.test_schema.test_volume;

How to use Volumes
The steps described in this section are expected to be completed by partners.

For instructions on how to create a volume, please see the above “How to create Volumes” section.

Step 1: Upload files to Volume
Use the provided APIs to upload files to the volume. We support uploading via SQL.

1. Note: SQL API support is available on DBR versions 13.2 and above.

Example of using the SQL API
Here is a simple example of how to use the SQL API to upload files. You need to set up the
connection following Managing Volumes with SQL API.

PUT 'home/bob/data.csv' INTO
'/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/file1.csv' OVERWRITE

File format recommendations
Supported source formats include CSV, JSON, Avro, ORC, Parquet, text, and binary files.
Databricks recommends that partners upload files in the format of Parquet.

Path setup recommendations
The path management within the volume is entirely up to the partner. Databricks recommends that
partners use table specific prefixes to separate out the workflows between different tables.

E.g., you can set up the full volume path like this:
“/Volumes/<catalog_name>/<schema_name>/<volume_name>/<table_name_tmp>/”

Replace the placeholder values:
● <catalog-name>: The name of the catalog.
● <schema-name>: The name of the schema.
● <volume-name>: The name of the volume.
● <table_name_tmp>: The name of the table. You can add a “_tmp” su�x to indicate this is

used only during the file uploading process.

For example, suppose you have 2 upload sessions. In session 1, you uploaded files: `expense_file_1`
and `revenue_file_1` for tables: “test_table_expense” and “test_table_revenue”. In session 2, you
added `expense_file_2` for “test_table_expense”. Then the paths could look like following:

● “/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/expense_file_
1”

● “/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/revenue_file_
1”

● “/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/expense_file_
2”

File sizing best practices
Databricks recommends that the file size should be roughly 128MB.

● For file formats such as CSV/JSON/Text/BINARY FILE, this is the data size uncompressed.
● For file formats such as Parquet/Avro/ORC, this is the data size compressed.

Step 2: Create a target table in Delta
COPY INTOmust target an existing Delta table.

Syntax

Run the following command to create the table.

CREATE TABLE IF NOT EXISTS catalog_name.schema_name.table_name

[(col_1 col_1_type, col_2 col_2_type, ...)]

[COMMENT <table-description>]

[TBLPROPERTIES (<table-properties>)];

Replace the placeholder values:
● <catalog-name>: The name of the catalog.
● <schema-name>: The name of the schema.
● <table-name>: The name of the table.
● <table-description>: Optional comment describing the table.
● <table-properties>: Optionally sets one or more user defined properties.

Databricks recommends that partners define the list of columns, their types, properties,
descriptions, and column constraints.

Example: Create a Delta table with Schema
You can also set the schema explicitly:

CREATE TABLE test_catalog.test_schema.test_table_with_schema (
loan_id BIGINT,
funded_amnt INT,
paid_amnt DOUBLE,
addr_state STRING

);

Step 3: Use the COPY INTO command to move files from Volumes
into Delta Lake.

COPY INTO provides following features when ingesting data:
1. COPY INTO is a re-triable and idempotent operation. Files in the source location that have

already been loaded are skipped.
2. COPY INTO supports concurrent invocations against the same table. As long as COPY INTO

is invoked concurrently on distinct sets of input files, each invocation should eventually
succeed. More details can be found here.

Syntax

COPY INTO target_table
FROM { source_clause |

(SELECT expression_list FROM source_clause) }
FILEFORMAT = data_source
[VALIDATE [ALL | num_rows ROWS]]
[FILES = (file_name [, ...]) | PATTERN = glob_pattern]
[FORMAT_OPTIONS ({ data_source_reader_option = value } [, ...])]
[COPY_OPTIONS ({ copy_option = value } [, ...])]

source_clause
source [WITH ([CREDENTIAL { credential_name |

(temporary_credential_options) }]
[ENCRYPTION (encryption_options)])]

Parameters

● target_table :
○ An existing Delta table

● source:
○ The file location to load the data from. Files in this location must have the format

specified in FILEFORMAT. The location is provided in the form of a URI.
○ You don’t need to provide credentials if the path is already defined as a volume path

that you have permissions to use.
○ Accepted encryption options are:

■ TYPE = 'AWS_SSE_C', and MASTER_KEY for AWS S3
● SELECT expression_list:

○ Selects the specified columns or expressions from the source data before copying
into the Delta table. The expressions can be anything you use with SELECT
statements, including window operations. You can use aggregation expressions
only for global aggregates–you cannot GROUP BY on columns with this syntax.

● FILEFORMAT = data_source:

○ The format of the source files to load. One of CSV, JSON, AVRO, ORC, PARQUET,

TEXT, BINARYFILE.

● VALIDATE

○ The data that is to be loaded into a table is validated but not written to the table.

These validations include:

■ Whether the data can be parsed.

■ Whether the schemamatches that of the table or if the schema needs to be

evolved.

■ Whether all nullability and check constraints are met.

○ The default is to validate all of the data that is to be loaded. You can provide a

number of rows to be validated with the ROWS keyword, such as VALIDATE 15 ROWS.

The COPY INTO statement returns a preview of the data of 50 rows or less, when a

number of less than 50 is used with the ROWS keyword.

● FILES

A list of file names to load, with length up to 1000. Cannot be specified with PATTERN.

● PATTERN

A glob pattern that identifies the files to load from the source directory. Cannot be

specified with FILES.

● FORMAT_OPTIONS

Options to be passed to the Apache Spark data source reader for the specified format. See

Format options for each file format.

● COPY_OPTIONS

Options to control the operation of the COPY INTO command.

○ force: boolean, default false. If set to true, idempotency is disabled and files are

loaded regardless of whether they’ve been loaded before.

○ mergeSchema: boolean, default false. If set to true, the schema can be evolved

according to the incoming data.

More details on the parameters can be found in the COPY INTO docs.

Example: Load data with schema defined

This example assumes that you’ve created a table with schema following “Example: Create a Delta
table with Schema”.

Below is an example of loading a single Parquet file:

COPY INTO test_catalog.test_schema.test_table_with_schema
FROM '/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/file1.parquet'
FILEFORMAT = PARQUET;

Below is an example of loading multiple parquet files from one folder:

COPY INTO test_catalog.test_schema.test_table_with_schema
FROM '/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/'
FILEFORMAT = PARQUET;

COPY INTO and schema evolution
For advanced users who’d like to use schema evolution, please follow the section “Appendix: COPY
INTO and schema evolution”.

Step 4: Clean up files in volume
Databricks recommends that partners delete files in the staging directory once the data is
ingested into Delta Lake. Partners can use the SQL REMOVE API to delete files from the staging
location. You can find detailed information about APIs in the Appendix.

The delete operation has to be done on a file level. You can NOT delete a folder and its contents
recursively.

E.g., you can use SQL API to remove the file

REMOVE '/Volumes/<catalog_name>/<schema_name>/<volume_name>/<table_name_tmp>/<file_name>'

To find all the files in a folder use LIST command:
LIST '/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/'

Suppose you have 2 files in the “test_table_revenue_tmp” folder. You can delete the files by running
following command:

REMOVE '/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/file1.csv'
REMOVE '/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/file2.csv'

Best practices on failure recovery

File upload failures
If you encountered failures while uploading files, it is safe to retry the upload operations.

While retrying, you want to make sure you do not accidentally put duplicated copies of data in
volume. This might lead to duplicated data in the target table.

Here an example where you can have duplicated data in the target table:
1. You received a timeout error when uploading `file1.csv` to

'/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/file1.parquet.
2. Since the first attempt failed, you issued a 2nd attempt, however, you uploaded to a

different
path:'/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/file1_ret
ry.parquet'.

3. It turned out that the 1st upload actually succeeded on volume, but the response was lost
during network transmission.

4. Now you issue the COPY INTO command on the folder:
'/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/`. This will
ingest both `file1.parquet` and `file1_retry.parquet` and you will have duplicated data.

A simple fix is to always use the same file path when retrying the file upload.

COPY INTO failures
COPY INTO is a re-triable and idempotent operation. Files in the source location that have already
been loaded are skipped. This means when you see COPY INTO failures, you can safely retry it
without worrying about duplicating data.

Best practices on uploading multiple files to one target table

[Recommended] Coordinator and worker architecture
If you havemultiple files that you’d like to ingest to a single target table, Databricks recommends
following a coordinator and worker architecture. You can have 1 coordinator andmany workers.

Here’s a high level summary of how to do it:
1. Each worker node is responsible for writing files to volume. All the worker nodes should

write to the same parent folder for a target table. E.g.
a. Worker A writes to

'/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/file1.p
arquet

b. Worker B writes to
'/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/file2.p
arquet/

2. After all the worker nodes are done uploading, the coordinator can issue a COPY INTO
command and load all the files in the folder. You only need 1 COPY INTO command for the
table.

a. E.g,

COPY INTO test_catalog.test_schema.test_table_with_schema
FROM '/Volumes/test_catalog/test_schema/test_volume/test_table_expense_tmp/'
FILEFORMAT = PARQUET;

3. After the COPY INTO is done, the coordinator can list all the files in the folder and delete
them.

Run COPY INTO concurrently
If you can NOT follow the “[Recommended] Coordinator and worker architecture”, you can run COPY
INTO concurrently against the same table. As long as COPY INTO is invoked concurrently on distinct
sets of input files, each invocation should eventually succeed. More details can be found here.

Running toomany concurrent COPY INTO commands can cause transaction conflicts and
eventually the COPY INTO command to fail. While there isn’t a one size fits all recommendation for
howmany COPY INTO calls can bemade concurrently, you can try adding parallelism while latencies
are consistent and you don’t get a COPY_INTO_ROCKSDB_MAX_RETRY_EXCEEDED error.

Note this will be less performant than the recommended approach as each COPY INTO invocations
involves overhead.

FAQ
Question: Howmany volumes can be created per schema?
Answer: You can create up to 10,000 volumes per schema, but it is recommended that you create 1
volume per schema.

Question: What’s the ideal file size?
Answer: Please check out the “File sizing best practices”.

Question: Instead of having partners creating a new schema, can partners reuse an existing
schema which is provided by the customer?
Answer: Yes, partners can reuse an existing schema provided by the customer. The set up steps in
this case would be slightly different from creating a new schema.

Here’re the high level steps if you choose to have partners creating a new schema:

1. Customers create a catalog.
2. Customers grant USE CATALOG and CREATE SCHEMA to the partner’s service principal on

the catalog.
3. Customers send the catalog information to the partners.

Mode details can be found at ”How to Create Volumes::Prerequisite 2: Create a Catalog”.

Here’re the high level steps if you choose to have partners reuse an existing schema:
1. Customers create a catalog.
2. Customers grant USE CATALOG to the partner’s service principal on the catalog.

a. To assign the permissions in SQL, you can run:

i. GRANT USE CATALOG ON CATALOG test_catalog TO

partner_service_principal;

1. E.g, GRANT USE CATALOG ON CATALOG test_catalog TO

`partner_job_bot`;

3. Customers create a schema.
a. For more information on how to create schemas, please checkout the

documentation on create schema.

4. Customers grant USE SCHEMA, CREATE TABLE, CREATE VOLUME to the partner’s service
principal on the schema.

a. To assign the permissions in SQL, you can run:

i. GRANT USE SCHEMA, CREATE TABLE, CREATE VOLUME ON SCHEMA

test_schema TO partner_service_principal;

1. E.g, GRANT USE CATALOG ON CATALOG test_catalog TO

`partner_job_bot`;

b. See Unity Catalog privileges and securable objects for more information.

5. Customers send the catalog and schema information to the partners.

Appendix

Managing Volumes with SQL API

We provide SQL APIs below to enable our partners to put/get/remove items into the volume for
staging purposes.

Prerequisites
To use the SQL API, please follow these steps:

1. If you are using a cluster, make sure the cluster has DBR version 13.2 or above.
2. Follow Databricks SQL Connector for Python to get started. Specifically you need to:

a. Gather the information for the cluster or SQL warehouse that you want to use.
b. Install the Databricks SQL Connector for Python library on your development

machine by running: pip install databricks-sql-connector.
3. When initializing the connection by calling sql.connect(), set `staging_allowed_local_path`.

For security, local files must be contained within, or descended from,
staging_allowed_local_path of the connection.

After the above steps, you should be able to use the SQL API to ingest files into volumes and also
load the files into delta via COPY INTO. You can find an example script here.

SQL Syntax
PUT <localfile> INTO '/Volumes/<catalog_name>/<schema_name>/<volume_name>/<path>' [OVERWRITE]

GET '/Volumes/<catalog_name>/<schema_name>/<volume_name>/<path>' TO <localfile>

REMOVE '/Volumes/<catalog_name>/<schema_name>/<volume_name>/<path>'

LIST '/Volumes/<catalog>/<schema>/<volume>/<path>/'

SQL Example
PUT '/home/bob/data.csv' INTO
'/Volumes/test_catalog/test_schema/test_volume/2023/06/file1.csv' OVERWRITE

GET '/Volumes/test_catalog/test_schema/test_volume/2023/06/file1.csv' TO '/home/bob/data.csv'

REMOVE '/Volumes/test_catalog/test_schema/test_volume/2023/06/file1.csv'

LIST '/Volumes/catalog_demo/schema_demo/volume_demo/2023/06/'

Example
Below is an example Python script that demonstrates how to use ingestion commands to
PUT/GET/REMOVE files and how to use COPY INTO to load the file into Delta.

See comment in the file on how to run it.

from databricks import sql
import os

"""
Databricks supports data ingestion of local files via a cloud staging location.
Ingestion commands will work on DBR >13.2 And you must include a staging_allowed_local_path kwarg when
calling sql.connect().

Use databricks-sql-connector to PUT files into the staging location where Databricks can access them:

put '/path/to/local/data.csv' into
'/volumes/test_catalog/test_schema/test_volume/examples/sales.csv' [overwrite]

and you can delete with a REMOVE command:

REMOVE '/Volumes/test_catalog/test_schema/test_volume/examples/sales.csv'

Ingestion queries are passed to cursor.execute() like any other query. For PUT commands, a local file
will be read. For security, this local file must be contained within, or descended from, a
staging_allowed_local_path of the connection.

After file is written to staging location, you can issue COPY INTO commands to loads the file into a
delta table:

COPY INTO my_table
FROM '/path/to/files'
FILEFORMAT = <format>
FORMAT_OPTIONS ('inferSchema' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true');

To run this script:

1. Set the environment variables for secrets:

export DATABRICKS_HOST=********.databricks.com
export DATABRICKS_HTTP_PATH=/sql/1.0/endpoints/****************
export DATABRICKS_TOKEN=dapi********************************

2. Set the CATALOG, SCHEMA, VOLUME and TABLE constants to your catalog, schema, volume and table.
3. Set the FILEPATH constant to the path of a file that will be uploaded (this example assumes its a CSV
file)
4. Run this file

"""

CATALOG = "test_catalog"
SCHEMA = "test_schema"
TABLE = "test_table"
VOLUME = "test_volume"

FILEPATH = "example.csv"

FILEPATH can be relative to the current directory.
Resolve it into an absolute path
_complete_path = os.path.realpath(FILEPATH)

if not os.path.exists(_complete_path):

It's easiest to save a file in the same directory as this script. But any path to a file will
work.

raise Exception(
"You need to set FILEPATH in this script to a file that actually exists."

)

Set staging_allowed_local_path equal to the directory that contains FILEPATH
staging_allowed_local_path = os.path.split(_complete_path)[0]

host = os.getenv("DATABRICKS_HOST")
http_path = os.getenv("DATABRICKS_HTTP_PATH")
access_token = os.getenv("DATABRICKS_TOKEN")

connection = sql.connect(
server_hostname=host,
http_path=http_path,
access_token=access_token,
staging_allowed_local_path=staging_allowed_local_path,

)

cursor = connection.cursor()

Ingestion commands are executed like any other SQL.
Here's a sample PUT query. You can remove OVERWRITE at the end to avoid silently overwriting data.
query = f"PUT '{_complete_path}' INTO '/Volumes/{CATALOG}/{SCHEMA}/{VOLUME}/pysql_examples/demo.csv'
OVERWRITE"

print(f"Uploading {FILEPATH} to staging location")
cursor.execute(query)
print("Upload was successful")

use COPY INTO to create a delta table from the uploaded file
first, create the target table
print(f"Create table: {CATALOG}.{SCHEMA}.{TABLE} so we can run COPY INTO")
create_table_query = f"CREATE TABLE IF NOT EXISTS {CATALOG}.{SCHEMA}.{TABLE};"
cursor.execute(create_table_query)
print("Create table was successful")

copy_into_command = f"""
COPY INTO {CATALOG}.{SCHEMA}.{TABLE}
FROM '/Volumes/{CATALOG}/{SCHEMA}/{VOLUME}/pysql_examples/demo.csv'
FILEFORMAT = CSV
FORMAT_OPTIONS ('mergeSchema' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true');
"""

print("Load data into delta using COPY INTO")
copy into
cursor.execute(copy_into_command)
print("COPY INTO was successful")

Here's a sample REMOVE query. It cleans up the the demo.csv created in our first query
query = f"REMOVE '/Volumes/{CATALOG}/{SCHEMA}/{VOLUME}/pysql_examples/demo.csv'"

print("Removing demo.csv from staging location")
cursor.execute(query)
print("Remove was successful")

clean up
cursor.close()
connection.close()

COPY INTO and schema evolution

Example: Create a Schemaless Delta table
If your data format supports schema evolution, you can create a schemaless delta table, and then
let COPY INTO infer the schema for you.

CREATE TABLE IF NOT EXISTS test_catalog.test_schema.test_table_schemaless;

Example: Load data with schema inference
This example assumes that you’ve created a schemaless table following “Example: Create a
Schemaless Delta table”.

Below is an example of loading a CSV file with headers.

COPY INTO test_catalog.test_schema.test_table_schemaless
FROM '/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/file1.csv'
FILEFORMAT = CSV
FORMAT_OPTIONS ('mergeSchema' = 'true', 'header' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true');

Below is an example of loading multiple CSV files with headers. The CSV files are located in:
'/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/'

COPY INTO test_catalog.test_schema.test_table_schemaless_from_multiple_files
FROM '/Volumes/test_catalog/test_schema/test_volume/test_table_revenue_tmp/'
FILEFORMAT = CSV
FORMAT_OPTIONS ('mergeSchema' = 'true', 'header' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true');

Migrating from PSL to Volumes
If you previously used Personal Staging Locations (PSLs), please follow the instructions in this doc
andmigrate to volumes.

Main differences between PSLs and volumes from partner integration’s view:
● For volumes, you’ll need to create them first before being able to write data to it. Please

refer to the “How to create Volumes” section on how to do this.
● The file path in volume is different from the PSL. The volume file path will look like this:

○ “/Volumes/<catalog_name>/<schema_name>/<volume_name>/<path>

