MLflow guide

Note

The managed MLflow integration with Databricks on Google Cloud requires Databricks Runtime for Machine Learning 8.1 or above.

Note

The MLflow CLI is not available on Databricks on Google Cloud.

MLflow is an open source platform for managing the end-to-end machine learning lifecycle. It has the following primary components:

  • Tracking: Allows you to track experiments to record and compare parameters and results.
  • Models: Allow you to manage and deploy models from a variety of ML libraries to a variety of model serving and inference platforms.
  • Projects: Allow you to package ML code in a reusable, reproducible form to share with other data scientists or transfer to production.
  • Model Registry: Allows you to centralize a model store for managing models’ full lifecycle stage transitions: from staging to production, with capabilities for versioning and annotating.
  • Model Serving: the model serving integration with Databricks on Google Cloud is not supported in this release.

MLflow supports Java, Python, R, and REST APIs.

Databricks provides a fully managed and hosted version of MLflow integrated with enterprise security features, high availability, and other Databricks workspace features such as experiment and run management and notebook revision capture. MLflow on Databricks offers an integrated experience for tracking and securing machine learning model training runs and running machine learning projects.

First-time users should begin with the quickstart, which demonstrates the basic MLflow tracking APIs. The subsequent articles introduce each MLflow component with example notebooks and describe how these components are hosted within Databricks.