Query generative AI models
Preview
Mosaic AI Model Serving is in Public Preview and is supported in us-east1
and us-central1
.
In this article, you learn how to format query requests for external models and send them to your model serving endpoint.
For traditional ML or Python models query requests, see Query serving endpoints for custom models.
Mosaic AI Model Serving supports external models for accessing generative AI models. Model Serving uses a unified OpenAI-compatible API and SDK for querying them. This makes it possible to experiment with and customize generative AI models for production across supported clouds and providers.
Mosaic AI Model Serving provides the following options for sending scoring requests to endpoints that serve foundation models or external models:
Method |
Details |
---|---|
OpenAI client |
Query a model hosted by a Mosaic AI Model Serving endpoint using the OpenAI client. Specify the model serving endpoint name as the |
Serving UI |
Select Query endpoint from the Serving endpoint page. Insert JSON format model input data and click Send Request. If the model has an input example logged, use Show Example to load it. |
REST API |
Call and query the model using the REST API. See POST /serving-endpoints/{name}/invocations for details. For scoring requests to endpoints serving multiple models, see Query individual models behind an endpoint. |
MLflow Deployments SDK |
Use MLflow Deployments SDK’s predict() function to query the model. |
Databricks Python SDK |
Databricks Python SDK is a layer on top of the REST API. It handles low-level details, such as authentication, making it easier to interact with the models. |
Requirements
A Databricks workspace in a supported region.
To send a scoring request through the OpenAI client, REST API or MLflow Deployment SDK, you must have a Databricks API token.
Install packages
After you have selected a querying method, you must first install the appropriate package to your cluster.
To use the OpenAI client, the databricks-sdk[openai]
package needs to be installed on your cluster. Databricks SDK provides a wrapper for constructing the OpenAI client with authorization automatically configured to query generative AI models. Run the following in your notebook or your local terminal:
!pip install databricks-sdk[openai]>=0.35.0
The following is only required when installing the package on a Databricks Notebook
dbutils.library.restartPython()
Access to the Serving REST API is available in Databricks Runtime for Machine Learning.
!pip install mlflow
The following is only required when installing the package on a Databricks Notebook
dbutils.library.restartPython()
The Databricks SDK for Python is already installed on all Databricks clusters that use Databricks Runtime 13.3 LTS or above. For Databricks clusters that use Databricks Runtime 12.2 LTS and below, you must install the Databricks SDK for Python first. See Databricks SDK for Python.
Query a chat completion model
The following are examples for querying a chat model. The example applies to querying a chat model made available using external models.
To use the OpenAI client, specify the model serving endpoint name as the model
input. The following example assumes you have a Databricks API token and openai
installed on your compute. You also need your Databricks workspace instance to connect the OpenAI client to Databricks.
import os
import openai
from openai import OpenAI
client = OpenAI(
api_key="dapi-your-databricks-token",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints"
)
response = client.chat.completions.create(
model="bedrock-chat-completions-endpoint",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is a mixture of experts model?",
}
],
max_tokens=256
)
Important
The following example uses REST API parameters for querying serving endpoints that serve external models. These parameters are Public Preview and the definition might change. See POST /serving-endpoints/{name}/invocations.
curl \
-u token:$DATABRICKS_TOKEN \
-X POST \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": " What is a mixture of experts model?"
}
]
}' \
https://<workspace_host>.databricks.com/serving-endpoints/<your-external-model-endpoint>/invocations \
Important
The following example uses the predict()
API from the MLflow Deployments SDK.
import mlflow.deployments
# Only required when running this example outside of a Databricks Notebook
export DATABRICKS_HOST="https://<workspace_host>.databricks.com"
export DATABRICKS_TOKEN="dapi-your-databricks-token"
client = mlflow.deployments.get_deploy_client("databricks")
chat_response = client.predict(
endpoint="bedrock--chat-completions-endpoint",
inputs={
"messages": [
{
"role": "user",
"content": "Hello!"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content": "What is a mixture of experts model??"
}
],
"temperature": 0.1,
"max_tokens": 20
}
)
This code must be run in a notebook in your workspace. See Use the Databricks SDK for Python from a Databricks notebook.
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import ChatMessage, ChatMessageRole
w = WorkspaceClient()
response = w.serving_endpoints.query(
name="bedrock-chat-completions-endpoint",
messages=[
ChatMessage(
role=ChatMessageRole.SYSTEM, content="You are a helpful assistant."
),
ChatMessage(
role=ChatMessageRole.USER, content="What is a mixture of experts model?"
),
],
max_tokens=128,
)
print(f"RESPONSE:\n{response.choices[0].message.content}")
As an example, the following is the expected request format for a chat model when using the REST API. For external models, you can include additional parameters that are valid for a given provider and endpoint configuration. See Additional query parameters.
{
"messages": [
{
"role": "user",
"content": "What is a mixture of experts model?"
}
],
"max_tokens": 100,
"temperature": 0.1
}
The following is an expected response format for a request made using the REST API:
{
"model": "bedrock-chat-completions-endpoint",
"choices": [
{
"message": {},
"index": 0,
"finish_reason": null
}
],
"usage": {
"prompt_tokens": 7,
"completion_tokens": 74,
"total_tokens": 81
},
"object": "chat.completion",
"id": null,
"created": 1698824353
}
Query an embedding model
The following example is an embeddings request for the gte-large-en
model made available by external models.
To use the OpenAI client, specify the model serving endpoint name as the model
input.
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()
openai_client = w.serving_endpoints.get_open_ai_client()
response = openai_client.embeddings.create(
model="cohere-embeddings-endpoint",
input="what is databricks"
)
To query foundation models outside your workspace, you must use the OpenAI client directly, as demonstrated below. The following example assumes you have a Databricks API token and openai installed on your compute. You also need your Databricks workspace instance to connect the OpenAI client to Databricks.
import os
import openai
from openai import OpenAI
client = OpenAI(
api_key="dapi-your-databricks-token",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints"
)
response = client.embeddings.create(
model="cohere-embeddings-endpoint",
input="what is databricks"
)
Important
The following example uses REST API parameters for querying serving endpoints that serve external models. These parameters are Public Preview and the definition might change. See POST /serving-endpoints/{name}/invocations.
curl \
-u token:$DATABRICKS_TOKEN \
-X POST \
-H "Content-Type: application/json" \
-d '{ "input": "Embed this sentence!"}' \
https://<workspace_host>.databricks.com/serving-endpoints/<your-embedding-model-endpoint>/invocations
Important
The following example uses the predict()
API from the MLflow Deployments SDK.
import mlflow.deployments
export DATABRICKS_HOST="https://<workspace_host>.databricks.com"
export DATABRICKS_TOKEN="dapi-your-databricks-token"
client = mlflow.deployments.get_deploy_client("databricks")
embeddings_response = client.predict(
endpoint="cohere-embeddings-endpoint",
inputs={
"input": "Here is some text to embed"
}
)
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import ChatMessage, ChatMessageRole
w = WorkspaceClient()
response = w.serving_endpoints.query(
name="cohere-embeddings-endpoint",
input="Embed this sentence!"
)
print(response.data[0].embedding)
The following is the expected request format for an embeddings model. For external models, you can include additional parameters that are valid for a given provider and endpoint configuration. See Additional query parameters.
{
"input": [
"embedding text"
]
}
The following is the expected response format:
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": []
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 2,
"total_tokens": 2
}
}
Query a text completion model
The following example applies to querying a text completions model made available using external models.
The following example queries the claude-2
completions model hosted by Anthropic using the OpenAI client. To use the OpenAI client, populate the model
field with the name of the model serving endpoint that hosts the model you want to query.
This example uses a previously created endpoint, anthropic-completions-endpoint
, configured for accessing external models from the Anthropic model provider. See how to create external model endpoints.
See Supported models for additional models you can query and their providers.
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()
openai_client = w.serving_endpoints.get_open_ai_client()
completion = openai_client.completions.create(
model="anthropic-completions-endpoint",
prompt="what is databricks",
temperature=1.0
)
print(completion)
Important
The following example uses REST API parameters for querying serving endpoints that serve external models. These parameters are Public Preview and the definition might change. See POST /serving-endpoints/{name}/invocations.
curl \
-u token:$DATABRICKS_TOKEN \
-X POST \
-H "Content-Type: application/json" \
-d '{"prompt": "What is a quoll?", "max_tokens": 64}' \
https://<workspace_host>.databricks.com/serving-endpoints/<your-completions-endpoint>/invocations
Important
The following example uses the predict()
API from the MLflow Deployments SDK.
import os
import mlflow.deployments
# Only required when running this example outside of a Databricks Notebook
os.environ['DATABRICKS_HOST'] = "https://<workspace_host>.databricks.com"
os.environ['DATABRICKS_TOKEN'] = "dapi-your-databricks-token"
client = mlflow.deployments.get_deploy_client("databricks")
completions_response = client.predict(
endpoint="openai-completions-endpoint",
inputs={
"prompt": "What is the capital of France?",
"temperature": 0.1,
"max_tokens": 10,
"n": 2
}
)
# Print the response
print(completions_response)
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import ChatMessage, ChatMessageRole
w = WorkspaceClient()
response = w.serving_endpoints.query(
name="openai-completions-endpoint",
prompt="Write 3 reasons why you should train an AI model on domain specific data sets."
)
print(response.choices[0].text)
The following is the expected request format for a completions model. For external models, you can include additional parameters that are valid for a given provider and endpoint configuration. See Additional query parameters.
{
"prompt": "What is mlflow?",
"max_tokens": 100,
"temperature": 0.1,
"stop": [
"Human:"
],
"n": 1,
"stream": false,
"extra_params":
{
"top_p": 0.9
}
}
The following is the expected response format:
{
"id": "cmpl-8FwDGc22M13XMnRuessZ15dG622BH",
"object": "text_completion",
"created": 1698809382,
"model": "gpt-3.5-turbo-instruct",
"choices": [
{
"text": "MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It provides tools for tracking experiments, managing and deploying models, and collaborating on projects. MLflow also supports various machine learning frameworks and languages, making it easier to work with different tools and environments. It is designed to help data scientists and machine learning engineers streamline their workflows and improve the reproducibility and scalability of their models.",
"index": 0,
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 83,
"total_tokens": 88
}
}