Databricks Runtime 10.1 for ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks Runtime 10.1 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 10.1 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
Note
These release notes may include references to features that are not available on Google Cloud as of this release.
New features and improvements
Databricks Runtime 10.1 ML is built on top of Databricks Runtime 10.1. For information on what’s new in Databricks Runtime 10.1, including Apache Spark MLlib and SparkR, see the Databricks Runtime 10.1 (EoS) release notes.
Enhancements to AutoML
In Databricks Runtime 10.1, AutoML includes improved semantic type detection, new alerts for potential data issues during training, new capabilities to prevent overfitting models, and the ability to split the input dataset into train, validation, and test sets chronologically.
Additional semantic type detections
AutoML now supports additional semantic type detection:
Numeric columns that contain categorical labels are treated as a categorical type.
String columns that contain English text are treated as a text feature.
You can now also add annotations to specify a column data type. For details, see Semantic type detection.
Alerts during training for potential data issues
AutoML now detects and generates alerts for potential issues with the dataset. Example alerts include unsupported column types and high cardinality columns. These alerts appear on the experiment page under the new Alerts tab. Additional information on alerts is included in the data exploration notebook. For more information, see Run the experiment and monitor the results.
Reduced model overfitting
Two new capabilities reduce the chances of overfitting a model when using AutoML:
AutoML now reports test metrics in additional to validation and training metrics.
AutoML now uses early stopping. It stops training and tuning models if the validation metric is no longer improving.
Split dataset into train/validation/test sets chronologically
For classification and regression problems, you can split the dataset into train, validation, and test sets chronologically. See Split data into train, validation, and test sets for details.
Enhancements to Databricks Feature Store
Databricks Feature Store now supports additional data types for feature tables: BinaryType
, DecimalType
, and MapType
.
Mlflow
The following improvements are available starting in Mlflow version 1.21.0, which is included in Databricks Runtime 10.1 ML.
[Models] Upgrade the
fastai
model flavor to support fastai v2 (2.4.1 and above).[Models] Introduce an mlflow.prophet model flavor for Prophet time series models.
[Scoring] Fix a schema enforcement error that incorrectly cast date-like strings to datetime objects.
Hyperopt
SparkTrials
now supports the early_stopping_fn
parameter for fmin
. You can use the early stopping function to specify conditions when Hyperopt should stop hyperparameter tuning before the maximum number of evaluations is reached. For example, you can use this parameter to end tuning if the objective function is no longer decreasing. For details, see fmin().
Major changes to Databricks Runtime ML Python environment
Python packages upgraded
automl 1.3.1 => 1.4.1
feature_store 0.3.4 => 0.3.5
holidays 0.11.2 => 0.11.3.1
horovod 0.22.1 => 0.23.0
hyperopt 0.2.5.db2 => 0.2.5.db4
imbalanced-learn 0.8.0 => 0.8.1
lightgbm 3.1.1 => 3.3.0
mlflow 1.20.2 => 1.21.0
petastorm 0.11.2 => 0.11.3
plotly 5.1.0 => 5.3.0
pytorch 1.9.0 => 1.9.1
spacy 3.1.2 => 3.1.3
sparkdl 2.2.0_db3 => 2.2.0_db4
torchvision 0.10.0 => 0.10.1
transformers 4.9.2 => 4.11.3
Deprecations
MLlib automated MLflow tracking is deprecated on clusters that run Databricks Runtime 10.1 ML and above. Instead, use MLflow PySpark ML autologging by calling mlflow.pyspark.ml.autolog()
. Autologging is enabled by default with Databricks Autologging.
System environment
The system environment in Databricks Runtime 10.1 ML differs from Databricks Runtime 10.1 as follows:
DBUtils: Databricks Runtime ML does not include Library utility (dbutils.library) (legacy). Use
%pip
commands instead. See Notebook-scoped Python libraries.For GPU clusters, Databricks Runtime ML includes the following NVIDIA GPU libraries:
CUDA 11.0
cuDNN 8.0.5.39
NCCL 2.10.3
TensorRT 7.2.2
Libraries
The following sections list the libraries included in Databricks Runtime 10.1 ML that differ from those included in Databricks Runtime 10.1.
In this section:
Top-tier libraries
Databricks Runtime 10.1 ML includes the following top-tier libraries:
Python libraries
Databricks Runtime 10.1 ML uses Virtualenv for Python package management and includes many popular ML packages.
In addition to the packages specified in the in the following sections, Databricks Runtime 10.1 ML also includes the following packages:
hyperopt 0.2.5.db4
sparkdl 2.2.0-db4
feature_store 0.3.5
automl 1.4.0
Note
Databricks Runtime 10.1 ML includes scikit-learn version 0.24 instead of version 1.0 due to incompatibility issues. The scikit-learn package interacts with many other packages in Databricks Runtime 10.1 ML.
You can upgrade to scikit-learn version 1.0; however, Databricks does not support this version.
To upgrade, use notebook-scoped libraries. From a notebook, run %pip install --upgrade "scikit-learn>=1.0,<1.1"
.
An alternative is to use this cluster init script:
#!/bin/bash
set -e
pip install --upgrade "scikit-learn>=1.0,<1.1"
Python libraries on CPU clusters
Library |
Version |
Library |
Version |
Library |
Version |
---|---|---|---|---|---|
absl-py |
0.11.0 |
Antergos Linux |
2015.10 (ISO-Rolling) |
appdirs |
1.4.4 |
argon2-cffi |
20.1.0 |
astor |
0.8.1 |
astunparse |
1.6.3 |
async-generator |
1.10 |
attrs |
20.3.0 |
backcall |
0.2.0 |
bcrypt |
3.2.0 |
bleach |
3.3.0 |
blis |
0.7.4 |
boto3 |
1.16.7 |
botocore |
1.19.7 |
cachetools |
4.2.4 |
catalogue |
2.0.6 |
certifi |
2020.12.5 |
cffi |
1.14.5 |
chardet |
4.0.0 |
clang |
5.0 |
click |
7.1.2 |
cloudpickle |
1.6.0 |
cmdstanpy |
0.9.68 |
configparser |
5.0.1 |
convertdate |
2.3.2 |
cryptography |
3.4.7 |
cycler |
0.10.0 |
cymem |
2.0.5 |
Cython |
0.29.23 |
databricks-automl-runtime |
0.2.3 |
databricks-cli |
0.14.3 |
dbus-python |
1.2.16 |
decorator |
5.0.6 |
defusedxml |
0.7.1 |
dill |
0.3.2 |
diskcache |
5.2.1 |
distlib |
0.3.3 |
distro-info |
0.23ubuntu1 |
entrypoints |
0.3 |
ephem |
4.1 |
facets-overview |
1.0.0 |
fasttext |
0.9.2 |
filelock |
3.0.12 |
Flask |
1.1.2 |
flatbuffers |
1.12 |
fsspec |
0.9.0 |
future |
0.18.2 |
gast |
0.4.0 |
gitdb |
4.0.7 |
GitPython |
3.1.12 |
google-auth |
1.22.1 |
google-auth-oauthlib |
0.4.2 |
google-pasta |
0.2.0 |
grpcio |
1.39.0 |
gunicorn |
20.0.4 |
gviz-api |
1.10.0 |
h5py |
3.1.0 |
hijri-converter |
2.2.2 |
holidays |
0.11.3.1 |
horovod |
0.23.0 |
htmlmin |
0.1.12 |
huggingface-hub |
0.0.19 |
idna |
2.10 |
ImageHash |
4.2.1 |
imbalanced-learn |
0.8.1 |
importlib-metadata |
3.10.0 |
ipykernel |
5.3.4 |
ipython |
7.22.0 |
ipython-genutils |
0.2.0 |
ipywidgets |
7.6.3 |
isodate |
0.6.0 |
itsdangerous |
1.1.0 |
jedi |
0.17.2 |
Jinja2 |
2.11.3 |
jmespath |
0.10.0 |
joblib |
1.0.1 |
joblibspark |
0.3.0 |
jsonschema |
3.2.0 |
jupyter-client |
6.1.12 |
jupyter-core |
4.7.1 |
jupyterlab-pygments |
0.1.2 |
jupyterlab-widgets |
1.0.0 |
keras |
2.6.0 |
Keras-Preprocessing |
1.1.2 |
kiwisolver |
1.3.1 |
koalas |
1.8.2 |
korean-lunar-calendar |
0.2.1 |
lightgbm |
3.3.0 |
llvmlite |
0.37.0 |
LunarCalendar |
0.0.9 |
Mako |
1.1.3 |
Markdown |
3.3.3 |
MarkupSafe |
2.0.1 |
matplotlib |
3.4.2 |
missingno |
0.5.0 |
mistune |
0.8.4 |
mleap |
0.18.1 |
mlflow-skinny |
1.21.0 |
multimethod |
1.6 |
murmurhash |
1.0.5 |
nbclient |
0.5.3 |
nbconvert |
6.0.7 |
nbformat |
5.1.3 |
nest-asyncio |
1.5.1 |
networkx |
2.5 |
nltk |
3.6.1 |
notebook |
6.3.0 |
numba |
0.54.1 |
numpy |
1.19.2 |
oauthlib |
3.1.0 |
opt-einsum |
3.3.0 |
packaging |
20.9 |
pandas |
1.2.4 |
pandas-profiling |
3.1.0 |
pandocfilters |
1.4.3 |
paramiko |
2.7.2 |
parso |
0.7.0 |
pathy |
0.6.0 |
patsy |
0.5.1 |
petastorm |
0.11.3 |
pexpect |
4.8.0 |
phik |
0.12.0 |
pickleshare |
0.7.5 |
Pillow |
8.2.0 |
pip |
21.0.1 |
plotly |
5.3.0 |
preshed |
3.0.5 |
prometheus-client |
0.10.1 |
prompt-toolkit |
3.0.17 |
prophet |
1.0.1 |
protobuf |
3.17.2 |
psutil |
5.8.0 |
psycopg2 |
2.8.5 |
ptyprocess |
0.7.0 |
pyarrow |
4.0.0 |
pyasn1 |
0.4.8 |
pyasn1-modules |
0.2.8 |
pybind11 |
2.8.0 |
pycparser |
2.20 |
pydantic |
1.8.2 |
Pygments |
2.8.1 |
PyGObject |
3.36.0 |
PyMeeus |
0.5.11 |
PyNaCl |
1.4.0 |
pyodbc |
4.0.30 |
pyparsing |
2.4.7 |
pyrsistent |
0.17.3 |
pystan |
2.19.1.1 |
python-apt |
2.0.0+ubuntu0.20.4.6 |
python-dateutil |
2.8.1 |
python-editor |
1.0.4 |
pytz |
2020.5 |
PyWavelets |
1.1.1 |
PyYAML |
5.4.1 |
pyzmq |
20.0.0 |
regex |
2021.4.4 |
requests |
2.25.1 |
requests-oauthlib |
1.3.0 |
requests-unixsocket |
0.2.0 |
rsa |
4.7.2 |
s3transfer |
0.3.7 |
sacremoses |
0.0.46 |
scikit-learn |
0.24.1 |
scipy |
1.6.2 |
seaborn |
0.11.1 |
Send2Trash |
1.5.0 |
setuptools |
52.0.0 |
setuptools-git |
1.2 |
shap |
0.39.0 |
simplejson |
3.17.2 |
six |
1.15.0 |
slicer |
0.0.7 |
smart-open |
5.2.0 |
smmap |
3.0.5 |
spacy |
3.1.3 |
spacy-legacy |
3.0.8 |
spark-tensorflow-distributor |
1.0.0 |
sqlparse |
0.4.1 |
srsly |
2.4.1 |
ssh-import-id |
5.10 |
statsmodels |
0.12.2 |
tabulate |
0.8.7 |
tangled-up-in-unicode |
0.1.0 |
tenacity |
6.2.0 |
tensorboard |
2.6.0 |
tensorboard-data-server |
0.6.1 |
tensorboard-plugin-profile |
2.5.0 |
tensorboard-plugin-wit |
1.8.0 |
tensorflow-cpu |
2.6.0 |
tensorflow-estimator |
2.6.0 |
termcolor |
1.1.0 |
terminado |
0.9.4 |
testpath |
0.4.4 |
thinc |
8.0.9 |
threadpoolctl |
2.1.0 |
tokenizers |
0.10.3 |
torch |
1.9.1+cpu |
torchvision |
0.10.1+cpu |
tornado |
6.1 |
tqdm |
4.59.0 |
traitlets |
5.0.5 |
transformers |
4.11.3 |
typer |
0.3.2 |
typing-extensions |
3.7.4.3 |
ujson |
4.0.2 |
unattended-upgrades |
0.1 |
urllib3 |
1.25.11 |
virtualenv |
20.4.1 |
visions |
0.7.4 |
wasabi |
0.8.2 |
wcwidth |
0.2.5 |
webencodings |
0.5.1 |
websocket-client |
0.57.0 |
Werkzeug |
1.0.1 |
wheel |
0.36.2 |
widgetsnbextension |
3.5.1 |
wrapt |
1.12.1 |
xgboost |
1.4.2 |
zipp |
3.4.1 |
Python libraries on GPU clusters
Library |
Version |
Library |
Version |
Library |
Version |
---|---|---|---|---|---|
absl-py |
0.11.0 |
Antergos Linux |
2015.10 (ISO-Rolling) |
appdirs |
1.4.4 |
argon2-cffi |
20.1.0 |
astor |
0.8.1 |
astunparse |
1.6.3 |
async-generator |
1.10 |
attrs |
20.3.0 |
backcall |
0.2.0 |
bcrypt |
3.2.0 |
bleach |
3.3.0 |
blis |
0.7.4 |
boto3 |
1.16.7 |
botocore |
1.19.7 |
cachetools |
4.2.4 |
catalogue |
2.0.6 |
certifi |
2020.12.5 |
cffi |
1.14.5 |
chardet |
4.0.0 |
clang |
5.0 |
click |
7.1.2 |
cloudpickle |
1.6.0 |
cmdstanpy |
0.9.68 |
configparser |
5.0.1 |
convertdate |
2.3.2 |
cryptography |
3.4.7 |
cycler |
0.10.0 |
cymem |
2.0.5 |
Cython |
0.29.23 |
databricks-automl-runtime |
0.2.3 |
databricks-cli |
0.14.3 |
dbus-python |
1.2.16 |
decorator |
5.0.6 |
defusedxml |
0.7.1 |
dill |
0.3.2 |
diskcache |
5.2.1 |
distlib |
0.3.3 |
distro-info |
0.23ubuntu1 |
entrypoints |
0.3 |
ephem |
4.1 |
facets-overview |
1.0.0 |
fasttext |
0.9.2 |
filelock |
3.0.12 |
Flask |
1.1.2 |
flatbuffers |
1.12 |
fsspec |
0.9.0 |
future |
0.18.2 |
gast |
0.4.0 |
gitdb |
4.0.7 |
GitPython |
3.1.12 |
google-auth |
1.22.1 |
google-auth-oauthlib |
0.4.2 |
google-pasta |
0.2.0 |
grpcio |
1.39.0 |
gunicorn |
20.0.4 |
gviz-api |
1.10.0 |
h5py |
3.1.0 |
hijri-converter |
2.2.2 |
holidays |
0.11.3.1 |
horovod |
0.23.0 |
htmlmin |
0.1.12 |
huggingface-hub |
0.0.19 |
idna |
2.10 |
ImageHash |
4.2.1 |
imbalanced-learn |
0.8.1 |
importlib-metadata |
3.10.0 |
ipykernel |
5.3.4 |
ipython |
7.22.0 |
ipython-genutils |
0.2.0 |
ipywidgets |
7.6.3 |
isodate |
0.6.0 |
itsdangerous |
1.1.0 |
jedi |
0.17.2 |
Jinja2 |
2.11.3 |
jmespath |
0.10.0 |
joblib |
1.0.1 |
joblibspark |
0.3.0 |
jsonschema |
3.2.0 |
jupyter-client |
6.1.12 |
jupyter-core |
4.7.1 |
jupyterlab-pygments |
0.1.2 |
jupyterlab-widgets |
1.0.0 |
keras |
2.6.0 |
Keras-Preprocessing |
1.1.2 |
kiwisolver |
1.3.1 |
koalas |
1.8.2 |
korean-lunar-calendar |
0.2.1 |
lightgbm |
3.3.0 |
llvmlite |
0.37.0 |
LunarCalendar |
0.0.9 |
Mako |
1.1.3 |
Markdown |
3.3.3 |
MarkupSafe |
2.0.1 |
matplotlib |
3.4.2 |
missingno |
0.5.0 |
mistune |
0.8.4 |
mleap |
0.18.1 |
mlflow-skinny |
1.21.0 |
multimethod |
1.6 |
murmurhash |
1.0.5 |
nbclient |
0.5.3 |
nbconvert |
6.0.7 |
nbformat |
5.1.3 |
nest-asyncio |
1.5.1 |
networkx |
2.5 |
nltk |
3.6.1 |
notebook |
6.3.0 |
numba |
0.54.1 |
numpy |
1.19.2 |
oauthlib |
3.1.0 |
opt-einsum |
3.3.0 |
packaging |
20.9 |
pandas |
1.2.4 |
pandas-profiling |
3.1.0 |
pandocfilters |
1.4.3 |
paramiko |
2.7.2 |
parso |
0.7.0 |
pathy |
0.6.0 |
patsy |
0.5.1 |
petastorm |
0.11.3 |
pexpect |
4.8.0 |
phik |
0.12.0 |
pickleshare |
0.7.5 |
Pillow |
8.2.0 |
pip |
21.0.1 |
plotly |
5.3.0 |
preshed |
3.0.5 |
prompt-toolkit |
3.0.17 |
prophet |
1.0.1 |
protobuf |
3.17.2 |
psutil |
5.8.0 |
psycopg2 |
2.8.5 |
ptyprocess |
0.7.0 |
pyarrow |
4.0.0 |
pyasn1 |
0.4.8 |
pyasn1-modules |
0.2.8 |
pybind11 |
2.8.1 |
pycparser |
2.20 |
pydantic |
1.8.2 |
Pygments |
2.8.1 |
PyGObject |
3.36.0 |
PyMeeus |
0.5.11 |
PyNaCl |
1.4.0 |
pyodbc |
4.0.30 |
pyparsing |
2.4.7 |
pyrsistent |
0.17.3 |
pystan |
2.19.1.1 |
python-apt |
2.0.0+ubuntu0.20.4.6 |
python-dateutil |
2.8.1 |
python-editor |
1.0.4 |
pytz |
2020.5 |
PyWavelets |
1.1.1 |
PyYAML |
5.4.1 |
pyzmq |
20.0.0 |
regex |
2021.4.4 |
requests |
2.25.1 |
requests-oauthlib |
1.3.0 |
requests-unixsocket |
0.2.0 |
rsa |
4.7.2 |
s3transfer |
0.3.7 |
sacremoses |
0.0.46 |
scikit-learn |
0.24.1 |
scipy |
1.6.2 |
seaborn |
0.11.1 |
Send2Trash |
1.5.0 |
setuptools |
52.0.0 |
setuptools-git |
1.2 |
shap |
0.39.0 |
simplejson |
3.17.2 |
six |
1.15.0 |
slicer |
0.0.7 |
smart-open |
5.2.0 |
smmap |
3.0.5 |
spacy |
3.1.3 |
spacy-legacy |
3.0.8 |
spark-tensorflow-distributor |
1.0.0 |
sqlparse |
0.4.1 |
srsly |
2.4.1 |
ssh-import-id |
5.10 |
statsmodels |
0.12.2 |
tabulate |
0.8.7 |
tangled-up-in-unicode |
0.1.0 |
tenacity |
6.2.0 |
tensorboard |
2.6.0 |
tensorboard-data-server |
0.6.1 |
tensorboard-plugin-profile |
2.5.0 |
tensorboard-plugin-wit |
1.8.0 |
tensorflow |
2.6.0 |
tensorflow-estimator |
2.6.0 |
termcolor |
1.1.0 |
terminado |
0.9.4 |
testpath |
0.4.4 |
thinc |
8.0.9 |
threadpoolctl |
2.1.0 |
tokenizers |
0.10.3 |
torch |
1.9.1+cu111 |
torchvision |
0.10.1+cu111 |
tornado |
6.1 |
tqdm |
4.59.0 |
traitlets |
5.0.5 |
transformers |
4.11.3 |
typer |
0.3.2 |
typing-extensions |
3.7.4.3 |
ujson |
4.0.2 |
unattended-upgrades |
0.1 |
urllib3 |
1.25.11 |
virtualenv |
20.4.1 |
visions |
0.7.4 |
wasabi |
0.8.2 |
wcwidth |
0.2.5 |
webencodings |
0.5.1 |
websocket-client |
0.57.0 |
Werkzeug |
1.0.1 |
wheel |
0.36.2 |
widgetsnbextension |
3.5.1 |
wrapt |
1.12.1 |
xgboost |
1.4.2 |
zipp |
3.4.1 |
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 10.1.
Java and Scala libraries (Scala 2.12 cluster)
In addition to Java and Scala libraries in Databricks Runtime 10.1, Databricks Runtime 10.1 ML contains the following JARs:
CPU clusters
Group ID |
Artifact ID |
Version |
---|---|---|
com.typesafe.akka |
akka-actor_2.12 |
2.5.23 |
ml.combust.mleap |
mleap-databricks-runtime_2.12 |
0.17.0-4882dc3 |
ml.dmlc |
xgboost4j-spark_2.12 |
1.4.1 |
ml.dmlc |
xgboost4j_2.12 |
1.4.1 |
org.graphframes |
graphframes_2.12 |
0.8.1-db6-spark3.2 |
org.mlflow |
mlflow-client |
1.20.2 |
org.mlflow |
mlflow-spark |
1.20.2 |
org.scala-lang.modules |
scala-java8-compat_2.12 |
0.8.0 |
org.tensorflow |
spark-tensorflow-connector_2.12 |
1.15.0 |
GPU clusters
Group ID |
Artifact ID |
Version |
---|---|---|
com.typesafe.akka |
akka-actor_2.12 |
2.5.23 |
ml.combust.mleap |
mleap-databricks-runtime_2.12 |
0.18.1-23eb1ef |
ml.dmlc |
xgboost4j-gpu_2.12 |
1.4.1 |
ml.dmlc |
xgboost4j-spark-gpu_2.12 |
1.4.1-spark3.2 |
org.graphframes |
graphframes_2.12 |
0.8.2-db1-spark3.2 |
org.mlflow |
mlflow-client |
1.21.0 |
org.mlflow |
mlflow-spark |
1.21.0 |
org.scala-lang.modules |
scala-java8-compat_2.12 |
0.8.0 |
org.tensorflow |
spark-tensorflow-connector_2.12 |
1.15.0 |