Databricks Runtime 10.3 for ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks Runtime 10.3 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 10.3 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, and XGBoost. Databricks Runtime ML includes AutoML, a tool to automatically train machine learning pipelines. Databricks Runtime ML also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
Note
These release notes may include references to features that are not available on Google Cloud as of this release.
New features and improvements
Databricks Runtime 10.3 ML is built on top of Databricks Runtime 10.3. For information on what’s new in Databricks Runtime 10.3, including Apache Spark MLlib and SparkR, see the Databricks Runtime 10.3 (EoS) release notes.
Enhancements to AutoML
The following enhancements have been made to AutoML.
AutoML now supports ARIMA model for forecasting
In addition to Prophet, AutoML now creates and evaluates ARIMA models for forecasting problems.
Exclude columns from dataset
When you use the AutoML API, you can specify columns that AutoML should ignore during its calculations. This is available only for classification and regression problems. See AutoML Python API reference for details.
Exclude algorithm frameworks from an AutoML run
You can specify algorithm frameworks, such as scikit-learn, that AutoML should not consider as it develops models. See Advanced configurations and AutoML Python API reference for details.
max_trials
deprecated
The max_trials
parameter is deprecated and will be removed in the next major Databricks Runtime ML release. Use timeout_minutes
to control the duration of an AutoML run. Also, in Databricks Runtime 10.1 ML and above, AutoML incorporates early stopping; it will stop training and tuning models if the validation metric is no longer improving.
Enhancements to Databricks Feature Store
You can now apply point-in-time lookups to time series feature tables. See Point-in-time support using time series feature tables for details.
Databricks Autologging (GA)
Databricks Autologging is now generally available in Databricks Runtime 10.3 ML. Databricks Autologging is a no-code solution that provides automatic experiment tracking for machine learning training sessions on Databricks. With Databricks Autologging, model parameters, metrics, files, and lineage information are automatically captured when you train models from a variety of popular machine learning libraries. Training sessions are recorded as MLflow Tracking Runs. Model files are also tracked so you can easily log them to the MLflow Model Registry and deploy them for real-time scoring with MLflow Model Serving.
See Databricks Autologging for more information.
System environment
The system environment in Databricks Runtime 10.3 ML differs from Databricks Runtime 10.3 as follows:
DBUtils: Databricks Runtime ML does not include Library utility (dbutils.library) (legacy). Use
%pip
commands instead. See Notebook-scoped Python libraries.For GPU clusters, Databricks Runtime ML includes the following NVIDIA GPU libraries:
CUDA 11.0
cuDNN 8.0.5.39
NCCL 2.10.3
TensorRT 7.2.2
Libraries
The following sections list the libraries included in Databricks Runtime 10.3 ML that differ from those included in Databricks Runtime 10.3.
In this section:
Top-tier libraries
Databricks Runtime 10.3 ML includes the following top-tier libraries:
Python libraries
Databricks Runtime 10.3 ML uses Virtualenv for Python package management and includes many popular ML packages.
In addition to the packages specified in the in the following sections, Databricks Runtime 10.3 ML also includes the following packages:
hyperopt 0.2.7.db1
sparkdl 2.2.0-db5
feature_store 0.3.7
automl 1.6.0
Python libraries on CPU clusters
Library |
Version |
Library |
Version |
Library |
Version |
---|---|---|---|---|---|
absl-py |
0.11.0 |
Antergos Linux |
2015.10 (ISO-Rolling) |
appdirs |
1.4.4 |
argon2-cffi |
20.1.0 |
astor |
0.8.1 |
astunparse |
1.6.3 |
async-generator |
1.10 |
attrs |
20.3.0 |
backcall |
0.2.0 |
bcrypt |
3.2.0 |
bidict |
0.21.4 |
bleach |
3.3.0 |
blis |
0.7.4 |
boto3 |
1.16.7 |
botocore |
1.19.7 |
cachetools |
4.2.4 |
catalogue |
2.0.6 |
certifi |
2020.12.5 |
cffi |
1.14.5 |
chardet |
4.0.0 |
click |
7.1.2 |
cloudpickle |
1.6.0 |
cmdstanpy |
0.9.68 |
configparser |
5.0.1 |
convertdate |
2.3.2 |
cryptography |
3.4.7 |
cycler |
0.10.0 |
cymem |
2.0.5 |
Cython |
0.29.23 |
databricks-automl-runtime |
0.2.5 |
databricks-cli |
0.16.2 |
dbl-tempo |
0.1.2 |
dbus-python |
1.2.16 |
decorator |
5.0.6 |
defusedxml |
0.7.1 |
dill |
0.3.2 |
diskcache |
5.2.1 |
distlib |
0.3.4 |
distro-info |
0.23ubuntu1 |
entrypoints |
0.3 |
ephem |
4.1.3 |
facets-overview |
1.0.0 |
fasttext |
0.9.2 |
filelock |
3.0.12 |
Flask |
1.1.2 |
flatbuffers |
2.0 |
fsspec |
0.9.0 |
future |
0.18.2 |
gast |
0.4.0 |
gitdb |
4.0.7 |
GitPython |
3.1.12 |
google-auth |
1.22.1 |
google-auth-oauthlib |
0.4.2 |
google-pasta |
0.2.0 |
grpcio |
1.39.0 |
gunicorn |
20.0.4 |
gviz-api |
1.10.0 |
h5py |
3.1.0 |
hijri-converter |
2.2.2 |
holidays |
0.12 |
horovod |
0.23.0 |
htmlmin |
0.1.12 |
huggingface-hub |
0.1.2 |
idna |
2.10 |
ImageHash |
4.2.1 |
imbalanced-learn |
0.8.1 |
importlib-metadata |
3.10.0 |
ipykernel |
5.3.4 |
ipython |
7.22.0 |
ipython-genutils |
0.2.0 |
ipywidgets |
7.6.3 |
isodate |
0.6.0 |
itsdangerous |
1.1.0 |
jedi |
0.17.2 |
Jinja2 |
2.11.3 |
jmespath |
0.10.0 |
joblib |
1.0.1 |
joblibspark |
0.3.0 |
jsonschema |
3.2.0 |
jupyter-client |
6.1.12 |
jupyter-core |
4.7.1 |
jupyterlab-pygments |
0.1.2 |
jupyterlab-widgets |
1.0.0 |
keras |
2.7.0 |
Keras-Preprocessing |
1.1.2 |
kiwisolver |
1.3.1 |
koalas |
1.8.2 |
korean-lunar-calendar |
0.2.1 |
langcodes |
3.3.0 |
libclang |
12.0.0 |
lightgbm |
3.3.1 |
llvmlite |
0.38.0 |
LunarCalendar |
0.0.9 |
Mako |
1.1.3 |
Markdown |
3.3.3 |
MarkupSafe |
2.0.1 |
matplotlib |
3.4.2 |
missingno |
0.5.0 |
mistune |
0.8.4 |
mleap |
0.18.1 |
mlflow-skinny |
1.23.0 |
multimethod |
1.6 |
murmurhash |
1.0.5 |
nbclient |
0.5.3 |
nbconvert |
6.0.7 |
nbformat |
5.1.3 |
nest-asyncio |
1.5.1 |
networkx |
2.5 |
nltk |
3.6.1 |
notebook |
6.3.0 |
numba |
0.55.0 |
numpy |
1.20.1 |
oauthlib |
3.1.0 |
opt-einsum |
3.3.0 |
packaging |
21.3 |
pandas |
1.2.4 |
pandas-profiling |
3.1.0 |
pandocfilters |
1.4.3 |
paramiko |
2.7.2 |
parso |
0.7.0 |
pathy |
0.6.0 |
patsy |
0.5.1 |
petastorm |
0.11.3 |
pexpect |
4.8.0 |
phik |
0.12.0 |
pickleshare |
0.7.5 |
Pillow |
8.2.0 |
pip |
21.0.1 |
plotly |
5.5.0 |
pmdarima |
1.8.4 |
preshed |
3.0.5 |
prometheus-client |
0.10.1 |
prompt-toolkit |
3.0.17 |
prophet |
1.0.1 |
protobuf |
3.17.2 |
psutil |
5.8.0 |
psycopg2 |
2.8.5 |
ptyprocess |
0.7.0 |
pyarrow |
4.0.0 |
pyasn1 |
0.4.8 |
pyasn1-modules |
0.2.8 |
pybind11 |
2.9.0 |
pycparser |
2.20 |
pydantic |
1.8.2 |
Pygments |
2.8.1 |
PyGObject |
3.36.0 |
PyMeeus |
0.5.11 |
PyNaCl |
1.4.0 |
pyodbc |
4.0.30 |
pyparsing |
2.4.7 |
pyrsistent |
0.17.3 |
pystan |
2.19.1.1 |
python-apt |
2.0.0+ubuntu0.20.4.6 |
python-dateutil |
2.8.1 |
python-editor |
1.0.4 |
python-engineio |
4.3.0 |
python-socketio |
5.4.1 |
pytz |
2020.5 |
PyWavelets |
1.1.1 |
PyYAML |
5.4.1 |
pyzmq |
20.0.0 |
regex |
2021.4.4 |
requests |
2.25.1 |
requests-oauthlib |
1.3.0 |
requests-unixsocket |
0.2.0 |
rsa |
4.7.2 |
s3transfer |
0.3.7 |
sacremoses |
0.0.46 |
scikit-learn |
0.24.1 |
scipy |
1.6.2 |
seaborn |
0.11.1 |
Send2Trash |
1.5.0 |
setuptools |
52.0.0 |
setuptools-git |
1.2 |
shap |
0.40.0 |
simplejson |
3.17.2 |
six |
1.15.0 |
slicer |
0.0.7 |
smart-open |
5.2.0 |
smmap |
3.0.5 |
spacy |
3.2.1 |
spacy-legacy |
3.0.8 |
spacy-loggers |
1.0.1 |
spark-tensorflow-distributor |
1.0.0 |
sqlparse |
0.4.1 |
srsly |
2.4.1 |
ssh-import-id |
5.10 |
statsmodels |
0.12.2 |
tabulate |
0.8.7 |
tangled-up-in-unicode |
0.1.0 |
tenacity |
6.2.0 |
tensorboard |
2.7.0 |
tensorboard-data-server |
0.6.1 |
tensorboard-plugin-profile |
2.5.0 |
tensorboard-plugin-wit |
1.8.1 |
tensorflow-cpu |
2.7.0 |
tensorflow-estimator |
2.7.0 |
tensorflow-io-gcs-filesystem |
0.23.1 |
termcolor |
1.1.0 |
terminado |
0.9.4 |
testpath |
0.4.4 |
thinc |
8.0.12 |
threadpoolctl |
2.1.0 |
tokenizers |
0.10.3 |
torch |
1.10.1+cpu |
torchvision |
0.11.2+cpu |
tornado |
6.1 |
tqdm |
4.59.0 |
traitlets |
5.0.5 |
transformers |
4.15.0 |
typer |
0.3.2 |
typing-extensions |
3.7.4.3 |
ujson |
4.0.2 |
unattended-upgrades |
0.1 |
urllib3 |
1.25.11 |
virtualenv |
20.4.1 |
visions |
0.7.4 |
wasabi |
0.8.2 |
wcwidth |
0.2.5 |
webencodings |
0.5.1 |
websocket-client |
0.57.0 |
Werkzeug |
1.0.1 |
wheel |
0.36.2 |
widgetsnbextension |
3.5.1 |
wrapt |
1.12.1 |
xgboost |
1.5.1 |
zipp |
3.4.1 |
Python libraries on GPU clusters
Library |
Version |
Library |
Version |
Library |
Version |
---|---|---|---|---|---|
absl-py |
0.11.0 |
Antergos Linux |
2015.10 (ISO-Rolling) |
appdirs |
1.4.4 |
argon2-cffi |
20.1.0 |
astor |
0.8.1 |
astunparse |
1.6.3 |
async-generator |
1.10 |
attrs |
20.3.0 |
backcall |
0.2.0 |
bcrypt |
3.2.0 |
bidict |
0.21.4 |
bleach |
3.3.0 |
blis |
0.7.4 |
boto3 |
1.16.7 |
botocore |
1.19.7 |
cachetools |
4.2.4 |
catalogue |
2.0.6 |
certifi |
2020.12.5 |
cffi |
1.14.5 |
chardet |
4.0.0 |
click |
7.1.2 |
cloudpickle |
1.6.0 |
cmdstanpy |
0.9.68 |
configparser |
5.0.1 |
convertdate |
2.3.2 |
cryptography |
3.4.7 |
cycler |
0.10.0 |
cymem |
2.0.5 |
Cython |
0.29.23 |
databricks-automl-runtime |
0.2.5 |
databricks-cli |
0.16.2 |
dbl-tempo |
0.1.2 |
dbus-python |
1.2.16 |
decorator |
5.0.6 |
defusedxml |
0.7.1 |
dill |
0.3.2 |
diskcache |
5.2.1 |
distlib |
0.3.4 |
distro-info |
0.23ubuntu1 |
entrypoints |
0.3 |
ephem |
4.1.3 |
facets-overview |
1.0.0 |
fasttext |
0.9.2 |
filelock |
3.0.12 |
Flask |
1.1.2 |
flatbuffers |
2.0 |
fsspec |
0.9.0 |
future |
0.18.2 |
gast |
0.4.0 |
gitdb |
4.0.7 |
GitPython |
3.1.12 |
google-auth |
1.22.1 |
google-auth-oauthlib |
0.4.2 |
google-pasta |
0.2.0 |
grpcio |
1.39.0 |
gunicorn |
20.0.4 |
gviz-api |
1.10.0 |
h5py |
3.1.0 |
hijri-converter |
2.2.2 |
holidays |
0.12 |
horovod |
0.23.0 |
htmlmin |
0.1.12 |
huggingface-hub |
0.1.2 |
idna |
2.10 |
ImageHash |
4.2.1 |
imbalanced-learn |
0.8.1 |
importlib-metadata |
3.10.0 |
ipykernel |
5.3.4 |
ipython |
7.22.0 |
ipython-genutils |
0.2.0 |
ipywidgets |
7.6.3 |
isodate |
0.6.0 |
itsdangerous |
1.1.0 |
jedi |
0.17.2 |
Jinja2 |
2.11.3 |
jmespath |
0.10.0 |
joblib |
1.0.1 |
joblibspark |
0.3.0 |
jsonschema |
3.2.0 |
jupyter-client |
6.1.12 |
jupyter-core |
4.7.1 |
jupyterlab-pygments |
0.1.2 |
jupyterlab-widgets |
1.0.0 |
keras |
2.7.0 |
Keras-Preprocessing |
1.1.2 |
kiwisolver |
1.3.1 |
koalas |
1.8.2 |
korean-lunar-calendar |
0.2.1 |
langcodes |
3.3.0 |
libclang |
12.0.0 |
lightgbm |
3.3.1 |
llvmlite |
0.38.0 |
LunarCalendar |
0.0.9 |
Mako |
1.1.3 |
Markdown |
3.3.3 |
MarkupSafe |
2.0.1 |
matplotlib |
3.4.2 |
missingno |
0.5.0 |
mistune |
0.8.4 |
mleap |
0.18.1 |
mlflow-skinny |
1.23.0 |
multimethod |
1.6 |
murmurhash |
1.0.5 |
nbclient |
0.5.3 |
nbconvert |
6.0.7 |
nbformat |
5.1.3 |
nest-asyncio |
1.5.1 |
networkx |
2.5 |
nltk |
3.6.1 |
notebook |
6.3.0 |
numba |
0.55.0 |
numpy |
1.20.1 |
oauthlib |
3.1.0 |
opt-einsum |
3.3.0 |
packaging |
21.3 |
pandas |
1.2.4 |
pandas-profiling |
3.1.0 |
pandocfilters |
1.4.3 |
paramiko |
2.7.2 |
parso |
0.7.0 |
pathy |
0.6.0 |
patsy |
0.5.1 |
petastorm |
0.11.3 |
pexpect |
4.8.0 |
phik |
0.12.0 |
pickleshare |
0.7.5 |
Pillow |
8.2.0 |
pip |
21.0.1 |
plotly |
5.5.0 |
pmdarima |
1.8.4 |
preshed |
3.0.5 |
prompt-toolkit |
3.0.17 |
prophet |
1.0.1 |
protobuf |
3.17.2 |
psutil |
5.8.0 |
psycopg2 |
2.8.5 |
ptyprocess |
0.7.0 |
pyarrow |
4.0.0 |
pyasn1 |
0.4.8 |
pyasn1-modules |
0.2.8 |
pybind11 |
2.9.0 |
pycparser |
2.20 |
pydantic |
1.8.2 |
Pygments |
2.8.1 |
PyGObject |
3.36.0 |
PyMeeus |
0.5.11 |
PyNaCl |
1.4.0 |
pyodbc |
4.0.30 |
pyparsing |
2.4.7 |
pyrsistent |
0.17.3 |
pystan |
2.19.1.1 |
python-apt |
2.0.0+ubuntu0.20.4.6 |
python-dateutil |
2.8.1 |
python-editor |
1.0.4 |
python-engineio |
4.3.0 |
python-socketio |
5.4.1 |
pytz |
2020.5 |
PyWavelets |
1.1.1 |
PyYAML |
5.4.1 |
pyzmq |
20.0.0 |
regex |
2021.4.4 |
requests |
2.25.1 |
requests-oauthlib |
1.3.0 |
requests-unixsocket |
0.2.0 |
rsa |
4.7.2 |
s3transfer |
0.3.7 |
sacremoses |
0.0.46 |
scikit-learn |
0.24.1 |
scipy |
1.6.2 |
seaborn |
0.11.1 |
Send2Trash |
1.5.0 |
setuptools |
52.0.0 |
setuptools-git |
1.2 |
shap |
0.40.0 |
simplejson |
3.17.2 |
six |
1.15.0 |
slicer |
0.0.7 |
smart-open |
5.2.0 |
smmap |
3.0.5 |
spacy |
3.2.1 |
spacy-legacy |
3.0.8 |
spacy-loggers |
1.0.1 |
spark-tensorflow-distributor |
1.0.0 |
sqlparse |
0.4.1 |
srsly |
2.4.1 |
ssh-import-id |
5.10 |
statsmodels |
0.12.2 |
tabulate |
0.8.7 |
tangled-up-in-unicode |
0.1.0 |
tenacity |
6.2.0 |
tensorboard |
2.7.0 |
tensorboard-data-server |
0.6.1 |
tensorboard-plugin-profile |
2.5.0 |
tensorboard-plugin-wit |
1.8.1 |
tensorflow |
2.7.0 |
tensorflow-estimator |
2.7.0 |
tensorflow-io-gcs-filesystem |
0.23.1 |
termcolor |
1.1.0 |
terminado |
0.9.4 |
testpath |
0.4.4 |
thinc |
8.0.12 |
threadpoolctl |
2.1.0 |
tokenizers |
0.10.3 |
torch |
1.10.1+cu111 |
torchvision |
0.11.2+cu111 |
tornado |
6.1 |
tqdm |
4.59.0 |
traitlets |
5.0.5 |
transformers |
4.15.0 |
typer |
0.3.2 |
typing-extensions |
3.7.4.3 |
ujson |
4.0.2 |
unattended-upgrades |
0.1 |
urllib3 |
1.25.11 |
virtualenv |
20.4.1 |
visions |
0.7.4 |
wasabi |
0.8.2 |
wcwidth |
0.2.5 |
webencodings |
0.5.1 |
websocket-client |
0.57.0 |
Werkzeug |
1.0.1 |
wheel |
0.36.2 |
widgetsnbextension |
3.5.1 |
wrapt |
1.12.1 |
xgboost |
1.5.1 |
zipp |
3.4.1 |
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 10.3.
Java and Scala libraries (Scala 2.12 cluster)
In addition to Java and Scala libraries in Databricks Runtime 10.3, Databricks Runtime 10.3 ML contains the following JARs:
CPU clusters
Group ID |
Artifact ID |
Version |
---|---|---|
com.typesafe.akka |
akka-actor_2.12 |
2.5.23 |
ml.combust.mleap |
mleap-databricks-runtime_2.12 |
0.18.1-23eb1ef |
ml.dmlc |
xgboost4j-spark_2.12 |
1.5.1 |
ml.dmlc |
xgboost4j_2.12 |
1.5.1 |
org.graphframes |
graphframes_2.12 |
0.8.2-db1-spark3.2 |
org.mlflow |
mlflow-client |
1.23.0 |
org.mlflow |
mlflow-spark |
1.23.0 |
org.scala-lang.modules |
scala-java8-compat_2.12 |
0.8.0 |
org.tensorflow |
spark-tensorflow-connector_2.12 |
1.15.0 |
GPU clusters
Group ID |
Artifact ID |
Version |
---|---|---|
com.typesafe.akka |
akka-actor_2.12 |
2.5.23 |
ml.combust.mleap |
mleap-databricks-runtime_2.12 |
0.18.1-23eb1ef |
ml.dmlc |
xgboost4j-spark_2.12 |
1.5.1 |
ml.dmlc |
xgboost4j_2.12 |
1.5.1 |
org.graphframes |
graphframes_2.12 |
0.8.2-db1-spark3.2 |
org.mlflow |
mlflow-client |
1.23.0 |
org.mlflow |
mlflow-spark |
1.23.0 |
org.scala-lang.modules |
scala-java8-compat_2.12 |
0.8.0 |
org.tensorflow |
spark-tensorflow-connector_2.12 |
1.15.0 |