Monitorar os custos do trabalho & desempenho com tabelas do sistema
Este artigo fornece exemplos de como usar tabelas de sistema para monitorar o custo e o desempenho do trabalho em seu site account.
Essas consultas calculam apenas os custos para a execução do trabalho no Job compute. Os trabalhos executados em SQL warehouse e all-purpose compute não são faturados como trabalho e, portanto, são excluídos da atribuição de custos.
Observação
Estas consultas não retornam registros de workspaces fora da região de nuvem do seu workspace atual. Para monitorizar os custos de jobs fora da sua região atual, execute essas consultas em um workspace implementado nessa região.
Requisitos
O esquema
system.lakeflow
deve ser ativado por um administrador do site account. Consulte Habilitar esquemas de tabela do sistema.Para acessar essas tabelas do sistema, os usuários devem:
Ser um administrador de metastore e um administrador de account, ou
Tenha as permissões
USE
eSELECT
nos esquemas do sistema. Consulte Conceder acesso às tabelas do sistema.
Painel de monitoramento de trabalhos
O painel a seguir usa tabelas do sistema para fornecer ao senhor um monitoramento abrangente do trabalho e da integridade operacional do Databricks. Ele inclui casos de uso comuns, como acompanhamento do desempenho do trabalho, monitoramento de falhas e utilização de recursos.
Importe o painel
Faça o download do arquivo JSON do painel no repositório do GitHub da Databricks.
Importe o painel de controle para o site workspace. Para obter instruções sobre como importar painéis, consulte Importar um arquivo de painel.
Consultas de observabilidade de custos
As seguintes consultas do dashboard demonstram os recursos de monitoramento de custos do trabalho.
Trabalho mais caro (últimos 30 dias)
Essa consulta identifica os jobs com a maior despesa dos últimos 30 dias.
with list_cost_per_job as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
COUNT(DISTINCT t1.usage_metadata.job_run_id) as runs,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = "JOBS"
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name,
t1.job_id,
t1.workspace_id,
t1.runs,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Execução do trabalho mais caro (últimos 30 dias)
Essa consulta identifica as execuções de jobs com a maior despesa dos últimos 30 dias.
with list_cost_per_job_run as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
t1.usage_metadata.job_run_id as run_id,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS'
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t1.workspace_id,
t2.name,
t1.job_id,
t1.run_id,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job_run t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Análise da tendência de gastos (7-14 dias)
Essa consulta identifica quais jobs tiveram o maior aumento nas despesas de custo de lista nas últimas duas semanas.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.usage_metadata.job_id as job_id,
t1.identity_metadata.run_as as run_as,
t1.usage_quantity * list_prices.pricing.default AS list_cost
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices
ON
t1.cloud = list_prices.cloud AND
t1.sku_name = list_prices.sku_name AND
t1.usage_start_time >= list_prices.price_start_time AND
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is NULL)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 14 DAY
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name
,t1.workspace_id
,t1.job_id
,t1.sku_name
,t1.run_as
,Last7DaySpend
,Last14DaySpend
,last7DaySpend - last14DaySpend as Last7DayGrowth
,try_divide( (last7DaySpend - last14DaySpend) , last14DaySpend) * 100 AS Last7DayGrowthPct
FROM
(
SELECT
workspace_id,
job_id,
run_as,
sku_name,
SUM(list_cost) AS spend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -8) AND date_add(current_date(), -1) THEN list_cost ELSE 0 END) AS Last7DaySpend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -15) AND date_add(current_date(), -8) THEN list_cost ELSE 0 END) AS Last14DaySpend
FROM job_run_timeline_with_cost
GROUP BY ALL
) t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
ORDER BY
Last7DayGrowth DESC
LIMIT 100
Consultas de saúde operacional
Aqui estão algumas das maneiras pelas quais esse painel ajuda o senhor a monitorar o desempenho e a confiabilidade do trabalho.
Análise de trabalhos fracassados
Essa consulta retorna informações sobre o trabalho com um alto número de execuções com falha nos últimos 30 dias. O senhor pode acessar view o número de execuções, o número de falhas, a taxa de sucesso e o custo da execução com falha do Job.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.identity_metadata.run_as as run_as,
t2.job_id,
t2.run_id,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_status_agg as (
SELECT
workspace_id,
job_id,
FIRST(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state IN ('ERROR', 'FAILED', 'TIMED_OUT')
GROUP BY ALL
),
terminal_statues as (
SELECT
workspace_id,
job_id,
CASE WHEN result_state IN ('ERROR', 'FAILED', 'TIMED_OUT') THEN 1 ELSE 0 END as is_failure,
period_end_time as last_seen_date
FROM system.lakeflow.job_run_timeline
WHERE
result_state IS NOT NULL AND
period_end_time >= CURRENT_DATE() - INTERVAL 30 DAYS
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
first(t2.name) as name,
t1.workspace_id,
t1.job_id,
COUNT(*) as runs,
t3.run_as,
SUM(is_failure) as failures,
(1 - COALESCE(try_divide(SUM(is_failure), COUNT(*)), 0)) * 100 as success_ratio,
first(t3.list_cost) as failure_list_cost,
MAX(t1.last_seen_date) as last_seen_date
FROM terminal_statues t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
LEFT JOIN cost_per_status_agg t3 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY failures DESC
Padrões de repetição
Essa consulta retorna informações sobre trabalhos que tiveram reparos frequentes nos últimos 30 dias, incluindo o número de reparos, o custo da execução do reparo e a duração cumulativa da execução do reparo.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t2.job_id,
t2.run_id,
t1.identity_metadata.run_as as run_as,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_unsuccesful_status_agg as (
SELECT
workspace_id,
job_id,
run_id,
first(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state != "SUCCEEDED"
GROUP BY ALL
),
repaired_runs as (
SELECT
workspace_id, job_id, run_id, COUNT(*) as cnt
FROM system.lakeflow.job_run_timeline
WHERE result_state IS NOT NULL
GROUP BY ALL
HAVING cnt > 1
),
successful_repairs as (
SELECT t1.workspace_id, t1.job_id, t1.run_id, MAX(t1.period_end_time) as period_end_time
FROM system.lakeflow.job_run_timeline t1
JOIN repaired_runs t2
ON t1.workspace_id=t2.workspace_id AND t1.job_id=t2.job_id AND t1.run_id=t2.run_id
WHERE t1.result_state="SUCCEEDED"
GROUP BY ALL
),
combined_repairs as (
SELECT
t1.*,
t2.period_end_time,
t1.cnt as repairs
FROM repaired_runs t1
LEFT JOIN successful_repairs t2 USING (workspace_id, job_id, run_id)
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
last(t3.name) as name,
t1.workspace_id,
t1.job_id,
t1.run_id,
first(t4.run_as, TRUE) as run_as,
first(t1.repairs) - 1 as repairs,
first(t4.list_cost) as repair_list_cost,
CASE WHEN t1.period_end_time IS NOT NULL THEN CAST(t1.period_end_time - MIN(t2.period_end_time) as LONG) ELSE NULL END AS repair_time_seconds
FROM combined_repairs t1
JOIN system.lakeflow.job_run_timeline t2 USING (workspace_id, job_id, run_id)
LEFT JOIN most_recent_jobs t3 USING (workspace_id, job_id)
LEFT JOIN cost_per_unsuccesful_status_agg t4 USING (workspace_id, job_id, run_id)
WHERE
t2.result_state IS NOT NULL
GROUP BY t1.workspace_id, t1.job_id, t1.run_id, t1.period_end_time
ORDER BY repairs DESC