gerenciar espaços de trabalho Databricks usando Terraform
Este artigo mostra como gerenciar recursos em um espaço de trabalho do Databricks usando o provedor Databricks Terraform.
Os blocos de configuração a seguir inicializam as variáveis mais comuns, databricks_spark_version, databricks_node_type e databricks_current_user.
terraform {
required_providers {
databricks = {
source = "databricks/databricks"
}
}
}
provider "databricks" {}
data "databricks_current_user" "me" {}
data "databricks_spark_version" "latest" {}
data "databricks_node_type" "smallest" {
local_disk = true
}
Funcionalidade padrão
Estes recursos não requerem privilégios administrativos. Mais documentação está disponível nas páginas dedicadas tokens, Notebook, Job, clusters.
resource "databricks_token" "pat" {
comment = "Created from ${abspath(path.module)}"
lifetime_seconds = 3600
}
resource "databricks_notebook" "this" {
path = "${data.databricks_current_user.me.home}/Terraform"
language = "PYTHON"
content_base64 = base64encode(<<-EOT
token = dbutils.secrets.get('${databricks_secret_scope.this.name}', '${databricks_secret.token.key}')
print(f'This should be redacted: {token}')
EOT
)
}
resource "databricks_job" "this" {
name = "Terraform Demo (${data.databricks_current_user.me.alphanumeric})"
task {
task_key = "demo_task"
new_cluster {
num_workers = 1
spark_version = data.databricks_spark_version.latest.id
node_type_id = data.databricks_node_type.smallest.id
}
notebook_task {
notebook_path = databricks_notebook.this.path
}
}
email_notifications {}
}
resource "databricks_cluster" "this" {
cluster_name = "Exploration (${data.databricks_current_user.me.alphanumeric})"
spark_version = data.databricks_spark_version.latest.id
instance_pool_id = databricks_instance_pool.smallest_nodes.id
autotermination_minutes = 20
autoscale {
min_workers = 1
max_workers = 10
}
}
output "notebook_url" {
value = databricks_notebook.this.url
}
output "job_url" {
value = databricks_job.this.url
}
Segurança do espaço de trabalho
Gerenciar a segurança requer privilégios administrativos. Mais documentação está disponível nas páginas dedicadas databricks_secret_acl, databricks_group, databricks_user, databricks_group_member, databricks_permissions.
resource "databricks_secret_acl" "spectators" {
principal = databricks_group.spectators.display_name
scope = databricks_secret_scope.this.name
permission = "READ"
}
resource "databricks_group" "spectators" {
display_name = "Spectators (by ${data.databricks_current_user.me.alphanumeric})"
}
resource "databricks_user" "dummy" {
user_name = "dummy+${data.databricks_current_user.me.alphanumeric}@example.com"
display_name = "Dummy ${data.databricks_current_user.me.alphanumeric}"
}
resource "databricks_group_member" "a" {
group_id = databricks_group.spectators.id
member_id = databricks_user.dummy.id
}
resource "databricks_permissions" "notebook" {
notebook_path = databricks_notebook.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "CAN_RUN"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_READ"
}
}
resource "databricks_permissions" "job" {
job_id = databricks_job.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "IS_OWNER"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_MANAGE_RUN"
}
}
resource "databricks_permissions" "cluster" {
cluster_id = databricks_cluster.this.id
access_control {
user_name = databricks_user.dummy.user_name
permission_level = "CAN_RESTART"
}
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_ATTACH_TO"
}
}
resource "databricks_permissions" "policy" {
cluster_policy_id = databricks_cluster_policy.this.id
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_USE"
}
}
resource "databricks_permissions" "pool" {
instance_pool_id = databricks_instance_pool.smallest_nodes.id
access_control {
group_name = databricks_group.spectators.display_name
permission_level = "CAN_ATTACH_TO"
}
}
Armazenar
Dependendo de suas preferências e necessidades, você pode
gerencia as bibliotecas JAR, Wheel e Egg por meio do recurso databricks_dbfs_file .
Liste as entradas no DBFS com a fonte de dados databricks_dbfs_file_paths .
Obtenha o conteúdo de arquivos pequenos com a fonte de dados databricks_dbfs_file .
Configuração avançada
Mais documentação está disponível na página dedicada ao workspace.
data "http" "my" {
url = "https://ifconfig.me"
}
resource "databricks_workspace_conf" "this" {
custom_config = {
"enableIpAccessLists": "true"
}
}